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Abstract A byproduct of genome-wide association

studies is the possibility of carrying out genome-enabled

prediction of disease risk or of quantitative traits. This

study is concerned with predicting two quantitative traits,

milk yield in dairy cattle and grain yield in wheat, using

dense molecular markers as predictors. Two support vector

regression (SVR) models, e-SVR and least-squares SVR,

were explored and compared to a widely applied linear

regression model, the Bayesian Lasso, the latter assuming

additive marker effects. Predictive performance was mea-

sured using predictive correlation and mean squared error

of prediction. Depending on the kernel function chosen,

SVR can model either linear or nonlinear relationships

between phenotypes and marker genotypes. For milk yield,

where phenotypes were estimated breeding values of bulls

(a linear combination of the data), SVR with a Gaussian

radial basis function (RBF) kernel had a slightly better

performance than with a linear kernel, and was similar to

the Bayesian Lasso. For the wheat data, where phenotype

was raw grain yield, the RBF kernel provided clear

advantages over the linear kernel, e.g., a 17.5% increase in

correlation when using the e-SVR. SVR with a RBF kernel

also compared favorably to the Bayesian Lasso in this case.

It is concluded that a nonlinear RBF kernel may be an

optimal choice for SVR, especially when phenotypes to be

predicted have a nonlinear dependency on genotypes, as it

might have been the case in the wheat data.

Introduction

The enormous amount of data stemming from high-

throughput genotyping assays has prompted genome-wide

association studies (GWAS) for many traits in many species.

It has been increasingly recognized that, in addition to

detection of causal variants (e.g., single nucleotide poly-

morphisms or SNPs), another utility of GWAS is to carry out

genome-assisted prediction of genetic merit of individuals

for the trait in question. In essence, this is equivalent to

genomic selection as proposed by Meuwissen et al. (2001)

for animal and plant breeding. Accurate prediction of genetic

merit plays a crucial role in genetic improvement of livestock

and plants, and also in personalized medicine where pre-

ventive and therapeutic decisions can be made for patients

according to their genetic profiles. For a recent review of

genome-enabled prediction methods for human disease

susceptibility, see de los Campos et al. (2010).

Results from GWAS (e.g., Visscher 2008; Wei et al.

2009; Yang et al. 2010) have confirmed that one key to

successful disease risk assessment or prediction of genetic

values is the use of a large ensemble of markers, as

opposed to setting stringent significance thresholds and

capitalizing on those validated large-effect loci only.

Additionally, albeit their relatively large effects, the small

number of validated variants usually explain a very small

fraction of phenotypic variation.
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Prediction of genetic values can be carried out using

parametric or nonparametric approaches. Parametric

Bayesian regression models, such as BayesA (Meuwissen

et al. 2001), are the most commonly used, and have the

appeal that can be related to a body of theory of quanti-

tative genetics. However, such methods are not flexible

enough to incorporate complex gene action (e.g., domi-

nance and epistasis) due to a rapid increase in model

dimension. On the other hand, nonparametric methods,

such as reproducing kernel Hilbert spaces (RKHS)

regression and radial basis function (RBF) regression (e.g.,

Gianola et al. 2006; Gianola and van Kaam 2008; Long

et al. 2010), provide an alternative to making predictions

without imposing a specific functional structure between

phenotypes and genotypes. The core component of such

methods is the choice of a suitable kernel matrix capable of

capturing unknown genetic complexity, and the resulting

model is a regression of phenotypes on a number of kernel

function evaluations.

This paper focuses on regression modeling for quanti-

tative traits using support vector machines (Vapnik 1995),

or SVM. SVM is regarded as a state-of-the-art machine

learning algorithm for classification and regression prob-

lems in various fields. However, there have been few

reported applications of SVM to genome-wide prediction

of quantitative traits; two are Maenhout et al. (2007) and

Moser et al. (2009) in plant and animal breeding, respec-

tively. Generally speaking, the advantage of SVM lies in its

use of nonlinear kernel functions to explore nonlinearities,

which is in common with the aforementioned RKHS and

RBF regressions.

Two sets of data were used to conduct empirical eval-

uations of SVM regressions. The first came from a Holstein

population, where the trait of interest was milk yield (MY).

The second was a set of wheat lines, with the trait being

grain yield. We built SVM regression models using a large

number of genetic markers as inputs for predicting phe-

notypes. Prediction results from SVM regressions were

compared with those of a benchmark model, the Bayesian

Lasso. Bayesian Lasso (Park and Casella 2008) is a well-

established parametric regression method for genomic

selection; especially, it has the nice feature of being fairly

robust with respect to prior distributions of a regularization

parameter controlling shrinkage of coefficients (de los

Campos et al. 2009).

This paper is organized as follows. The ‘‘Data’’ section

describes the two data sets (MY and wheat). Section

‘‘Support vector regression’’ describes two SVM regression

models used in this study and details about parameter

tuning for them. Section ‘‘Bayesian Lasso’’ briefly reviews

the Bayesian Lasso method. After presenting the ‘‘Results’’

section we discuss our findings and related issues in

‘‘Discussion’’ and conclude our work in ‘‘Conclusions’’.

Materials and methods

Data

MY data was from a sample of 4,703 Holstein sires. Phe-

notypes were sires’ predicted transmitting ability (PTA,

half of the breeding value) for milk yield, obtained from

conventional progeny testing. A panel of 32,518 whole-

genome SNP markers was available for all sires, and they

were used as model predictors. Within these sires, 3,305

(born between years 1952 and 1998) were assigned to a

training set, and the remaining 1,398 sires (born between

1999 and 2002) were assigned to a test set. All models were

fitted using data on training sires and genomic predictions

of PTAs were made for testing sires. Genotypes and phe-

notypes were provided by the USDA Bovine Functional

Genomics Lab and Animal Improvement Programs Lab,

respectively, as in an earlier study (Weigel et al. 2009).

Figure 1a depicts empirical distributions of the phenotypic

and marker allele frequency data from all 4,703 sires. The

minor allele frequencies of these 32,518 SNPs had an

approximately uniform distribution with a slight excess of

frequencies toward 0.5. This is probably due to SNP

prescreening so as to increase informativeness of the final

set of SNPs.

The wheat data contained 599 wheat lines, each geno-

typed with 1279 DArT markers (Diversity Array Tech-

nology). DArT markers may take on one of two values,

denoting presence or absence of an allele. The data was

from several international trials conducted at the Interna-

tional Maize and Wheat Improvement Center, Mexico.

Edited data can be downloaded from R package BLR

(http://cran.r-project.org/web/packages/BLR/index.html)

and more information can be found in Crossa et al. (2007)

and de los Campos et al. (2009). The phenotypic trait

considered here was the average grain yield for each line

collected in one the four macroenvironments chosen in

these trials.

Distributions of phenotypes and genotypes are shown in

Fig. 1b. The minor allele frequencies of DArT appeared to

have a bimodal distribution. Unlike the MY data, where

division into training-test sets was naturally based on birth

years of sires, the wheat data was partitioned randomly into

a training set (480 lines) and a test set (119 lines). This was

repeated 50 times by sampling lines at random.

Support vector regression

The SVM developed by Vapnik (1995) is grounded in

statistical learning theory, where the goal is to achieve

good generalization performance (i.e., low prediction error

of testing data), given a finite amount of training data.

Useful reviews on SVM are Burges (1998), Cristianini and
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Shawe-Taylor (2000), Smola and Schölkopf (2004),

Bishop (2006) and Cherkassky and Mulier (2007) and

references therein. Support vector regression (SVR) is an

important application of the SVM methodology. In this

study, two SVR models were investigated. One is the

classic e-SVR (Vapnik 1995) and the other is a least-

squares (LS) SVR (Suykens et al. 2002). Both SVRs

minimize a regularized loss function. However, they differ

in the loss function chosen, as described below.

General formulation

Consider learning a mapping f(x): Rp ! R, given a set of

training data

ðx1; y1Þ; . . .; ðxi; yiÞ; . . .; ðxn; ynÞ; xi 2 Rp; yi 2 R:

Here, xi is a p-dimensional input vector, such as a vector of

genotypic codes of p SNP markers; yi is a real-valued

response variable, e.g., phenotype. Specifically, one assumes

that f(x) is a linear function of the form f(x) = w0x ? b, with

w being a vector of unknown weights (i.e., regression

coefficients) and b being the bias. According to the SVM

theory, learning f(x) is by minimizing the following

regularized loss function:

1

2
wk k2þC

Xn

i¼1

LðeiÞ: ð1Þ

In (1), wk k2¼ w0w, represents model complexity;

ei = yi - f(xi) is the error associated with the ith (i =

1,…,n) training data point; L(�) denotes the loss function,

and C is a positive regularization parameter controlling the

trade-off between model complexity and training error.

e-SVR

In e-SVR, the so-called e-insensitive loss function (Vapnik

1995) is used for L, giving

LeðeÞ ¼
0 if ej j\e

ej j � e otherwise

(

Hence, the loss function is zero (‘‘insensitive’’) for any

absolute error smaller than a predefined value e. For an

Fig. 1 Distributions of the

response variable and minor

allele frequency of markers in

MY and wheat data sets
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error larger than e, the loss is equal to the difference

between the absolute error and e. Figure 2 illustrates the

e-insensitive loss function. It is more convenient to express

the e-insensitive loss function in terms of slack variables

(n, n*). By definition, one has n[ 0 and n* = 0 for data

points with positive errors, and n* [ 0 and n = 0 for

points with negative errors. Taken together, the

optimization problem can now be formulated as

min
w;b;n;n�

1

2
wk k2þC

Xn

i¼1

ni þ n�i
� �

 !
; ð2Þ

subject to

ni� 0; n�i � 0;

yi� f ðxiÞ þ eþ ni;

yi� f ðxiÞ � e� n�i ; for i¼1; . . .n:

Both C and e affect model complexity. A larger C or a

smaller e results in a more complicated model but smaller

training errors.

LS-SVR

LS-SVR uses a common squared loss function, leading to

the following optimization problem:

min
w;b;e

1

2
wk k2þC

2

Xn

i¼1

e2
i

 !
: ð3Þ

As in e-SVR, here, C is a positive regularization

parameter. In fact, (3) is essentially a ridge regression

problem.

Solutions

The standard method for solving the SVR optimization

problem is to construct a Lagrange function from (2) or (3)

so as to cast the original problem into a dual space of

Lagrange multipliers and find solutions therein (see, e.g.,

Nocedal and Wright 1999). The final solutions of the two

SVRs take the same form, that is, f ðxÞ ¼
Pn

i¼1 aix
0
ixþ b,

where ai’s and b can be obtained by solving either a qua-

dratic programming problem (e-SVR) or a set of linear

equations (LS-SVR) in the dual space. It is useful to note

that the solution is a linear combination of inner products

x0ix and, thus, linear in the input data x. An important

property of the e-SVR solution is sparseness, meaning that

a fraction of ai’s are equal to zero and thereby vanishing in

the final model f(x). Only data points with ai [ 0 are rel-

evant and are termed ‘‘support vectors’’. However, sparsity

does not hold for LS-SVR.

The use of kernel functions for nonlinear SVR

modeling

A feature of SVR is that its formulation (in the dual space)

and solution depends only on the inner products (e.g.,

x0ixj). A kernel function returns the value of the inner

product between two vectors in some transformed or fea-

ture space (which can be infinite dimensional) and, there-

fore, can be used in place of the inner products in the

SVR solution. Generally, a kernel can be expressed as

k(x, z) = u(x)0u(z), where x and z are two vectors in the

original space, whereas u(x) and u(z) are the correspond-

ing vectors in the feature space. Since a kernel is a function

of two vectors in the original space, one does not need to

know explicitly the mapping u(x), which is a great con-

venience for formulating a nonlinear SVR.

A linear kernel performs an identity mapping, that is,

k(x, z) = x0z, as used in the SVR described earlier. On

the other hand, a nonlinear kernel is often used to

potentially increase SVR’s predictive power. A com-

monly used nonlinear kernel is the Gaussian RBF func-

tion (RBF kernel for short); its general form is k(x, z) =

exp (-kx - zk2/r2), which is indexed by a bandwidth

parameter r. Given the choice of kernel function, solving

the SVR problem follows the same Lagrange method

mentioned before, and the resulting nonlinear SVR

model is a linear combination of a set of kernel func-

tions: f ðxÞ ¼
Pn

i¼1 aikðx; xiÞ þ b.

Selection of tuning parameters

As noted, to solve the optimization problem of e-SVR, i.e.,

(2), one needs to preset two tuning parameters: C and e. In

LS-SVR, there is only one regularization parameter C in

(3). For both SVRs, when a Gaussian RBF kernel is used,

an additional tuning parameter, the bandwidth r, must also

be determined. Parameter tuning for each of the two SVRs

in this study is detailed below.

Fig. 2 Vapnik’s e-insensitive loss function for regression. The loss

function is zero if the absolute error is less than e, a predefined value.

For an error with an absolute value larger than e, the loss is equal to

the extra error beyond e. The loss is denoted by n or n*, depending on

the sign of the error
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LS-SVR

Tuning C or r for LS-SVR was done by grid search over a

range of values, and each value was evaluated by cross-

validation (CV) on the training set (using correlation as a

criterion). A fivefold CV was used, and the value giving

rise to the best CV performance was chosen. The grid

values of C for LS-SVR ranged from 0.5 to 70 for both the

MY and wheat data. This grid was obtained by locally

refining an initial broader grid, after several trials. For r,

the candidate set of values was chosen based on the dis-

tribution of Euclidean distances between training samples.

Linking r to sample Euclidean distance was proposed by

Coen et al. (2006), and the basic rationale is as follows.

Note that a (scaled) Gaussian RBF kernel function has

form

kðxi; xjÞ ¼ exp �
xi � xj

�� ��� ffiffiffi
p
p

r

� �2

;

where xi (xj) is the vector of genotypes of individual i (j).

The scaling via
ffiffiffi
p
p

(dimension of xi) is applied because the

value of the Euclidean norm kxi - xjk grows with p. The

idea is that the range of xi � xj

�� ��� ffiffiffi
p
p

(the scaled

Euclidean distance) can be used as a reasonable guide for

the range of r values; r being too large or too small rel-

ative to the distribution of xi � xj

�� ��� ffiffiffi
p
p

tends to make the

kernel function approach its extreme values 1 or 0, thereby

affecting prediction accuracy adversely.

Figure 3 presents distributions of the scaled Euclidean

distances of all pairs of training samples in the MY and wheat

data. Figure 4 illustrates (using MY data) that a r value

deviating far away from the range of the sample Euclidean

distances (about 0.7 to 1) leads to a degraded CV perfor-

mance; smaller values of r seem to have a stronger adverse

effect than larger values. Guided by the distributions shown

in Fig. 3, the grid values chosen for r ranged from 0.1 to 4.5

for MY, and from 0.1 to 1 for wheat; these ranges covered the

optimal values according to our tuning results.

e-SVR

In e-SVR with a linear kernel, C and e were selected via a

fivefold CV on the training set, by grid search. The grid

values of C ranged from 10-5 to 1 for MY data, and from

10-3 to 1 for wheat data; the grid values of e ranged from

10-4 to 1 for MY data, and from 10-5 to 1 for wheat data.

For e-SVR with a RBF kernel, the additional tuning of

the bandwidth parameter r implies a grid search over a

3-dimensional parameter space (C, e, r). For a large data

set, such as the MY data (with 3,305 records and 32,518

predictors), computational burden in this case is enormous.

Alternatively, Cherkassky and Ma (2004b) proposed a

practical and analytical method to choose C and e directly

from the training data, assuming that a Gaussian RBF

kernel is used. Specifically, the value of C is chosen as

C ¼ max �yþ 3ry

		 		; �y� 3ry

		 		� �

where �y and ry are the mean and standard deviation of

the response values, respectively. This can effectively

handle outliers in the training data. For e, its value is

given by

Fig. 3 Histograms of Euclidean distances between training sample

points in the MY and wheat data. Distances xi � xj

�� ��� ffiffiffi
p
p� �

were

computed for all pairs of training data points
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e ¼ 3re

ffiffiffiffiffiffiffi
ln n

n

r

where re is the residual standard deviation, and n is

training sample size. It is assumed that the residual stan-

dard deviation is known or can be estimated from data. In

our case, however, ry was used instead of re, as the latter

was unknown. Although one can first perform some prior

analysis (e.g., via the Bayesian Lasso) to obtain an estimate

of re, it may lead to an unfair comparison with other

methods that do not utilize data driven information. After C

and e were determined analytically, the bandwidth r in the

RBF kernel was chosen by grid search in conjunction with

a fivefold CV evaluation. The grid of values searched for r
was the same as those in LS-SVR.

Implementation

For each of e-SVR and LS-SVR, two types of kernels were

considered: a linear kernel and a Gaussian RBF kernel. The

toolbox LIBSVM (Chang and Lin 2001) was used to

implement e-SVR, and another toolbox, LS-SVMlab (v1.7)

(Pelckmans et al. 2007), was used for LS-SVR.

Bayesian Lasso

The Bayesian Lasso was used to estimate all marker effects

simultaneously, and was employed as a benchmark. This

method was first proposed by Park and Casella (2008) and

has been applied to QTL mapping (e.g., Yi and Xu 2008)

and genomic selection (e.g., de los Campos et al. 2009)

recently.

Consider the linear regression model y = 1nl ?

Xb ? e, where y is an n 9 1 vector of phenotypes; l is a

common effect to all individuals; X is an n 9 p incidence

matrix of marker genotypes (coded as 0, 1 or 2 for bi-allelic

SNP); b is a p 9 1 vector of unknown coefficients, i.e.,

regressions on markers; and e is a vector of independent and

identically distributed residuals distributed as Nð0; Ir2
eÞ,

where r2
e is the residual variance.

Bayesian Lasso assigns the same double exponential

prior distribution to each element of b, bj (j = 1,…, p). This

is equivalent to the following two steps (Park and Casella

2008):

pðbjjsjÞ�Nð0; s2
j Þ; j ¼ 1; . . .; p

pðsjÞ�ExponentialðkÞ; j ¼ 1; . . .; p

After integrating out the sj’s, the marginal distribution

for each bj (given k) can be shown to be double

exponential, with density

pðbjjkÞ�
ffiffiffiffiffi
2k
p

2
exp �

ffiffiffiffiffi
2k
p

bj

		 		

 �

:

Compared to a Normal prior, the double exponential

produces stronger shrinkage of coefficients that are close to

zero and less shrinkage of those with large absolute values

(de los Campos et al. 2009). Usually, k is assigned a

conjugate Gamma prior with its hyperparameters (shape a
and rate b) chosen by the user. Specifically, b controls the

amount of shrinkage: a small value produces a strong

shrinkage, reflecting the prior belief that most marker

effects are nil. Further, the fully conditional posterior

distribution of k is Gamma aþ p; bþ
Pp

j¼1 s2
j


 �
. Hence, a

small value for b also corresponds to a vague prior.

In our Bayesian Lasso implementation, the prior distri-

butions used were as follows. (1) l was assigned a flat

prior. (2) The prior for the error variance, r2
e , was a scaled

inverted Chi-square distribution with degrees-of-freedom

me = 4.2, and scale S2
e = 1. 3) For k, a vague Gamma

(a = 1, b = 0.001) distribution was chosen. All posterior

distributions were sampled via Gibbs sampling. A single

chain was run for 80,000 iterations, with the first 50,000

discarded as burn-in. The remaining iterations were thinned

at a rate of 30. The posterior mean (after burn-in and

thinning) of each parameter was used as its point estimate.

The Bayesian Lasso was coded in Fortran 90.

Results

Table 1 summarizes results obtained with the MY and

wheat data sets. Two measures of predictive performance

were used, predictive correlation and predictive mean

squared error (PMSE). Given observed response values in

the test set (y) and their predicted values (ŷ), the predictive

correlation was the Pearson’s correlation between y and ŷ,

Fig. 4 Influence of bandwidth parameter (r) in the Gaussian RBF

kernel on cross-validation correlation of LS-SVR, for different values

of C (the regularization parameter). MY data was used. The range of

sample Euclidean distances is indicated in the box
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and PMSE was ðy� ŷÞ0ðy� ŷÞ=ntest, where ntest is the size

of test sample.

For MY data, the following was observed.

1. LS-SVR was slightly better than e-SVR when either a

linear or a RBF kernel was used. The largest difference

between the two SVR’s was found with respect to

PMSE when both used a linear kernel, in which case

LS-SVR reduced PMSE by 9% relative to e-SVR.

2. For either LS-SVR or e-SVR, the RBF kernel was

slightly better than the linear kernel. The largest

difference between the two kernels was found for

PMSE when e-SVR was used, where the RBF kernel

reduced PMSE by 4.7% relative to the linear kernel.

3. Overall, the best SVR performance was attained when

using LS-SVR with a RBF kernel; in this case, the

predictive correlation (0.7) of SVR was equal to that of

the Bayesian Lasso, while the PMSE (0.532) of SVR

was a little larger than that of Bayesian Lasso (0.50).

For the wheat data, results are expected to be less var-

iable than those from the MY data, as they were averaged

over 50 training–testing replicates. Clear differences were

found between kernels for each of the two SVR’s. The

improvement of the RBF kernel over the linear kernel was

17.5% in correlation and 14.1% in PMSE in the case of

e-SVR. For LS-SVR, the improvement was 13% in corre-

lation and 10% in PMSE. Prediction results of Bayesian

Lasso were closest to those of LS-SVR with a linear kernel.

Moreover, when using a Gaussian RBF kernel, the two

SVR’s had similar predictive ability, and were better than

the Bayesian Lasso in this respect.

While our primary interest was in assessing predictive

ability of various procedures, we also checked the extent of

agreement of the predicted values yielded by them. This

was done for the MY data only because the wheat data

analysis involved 50 training-test sets, and it was not

practical to display results replicate by replicate. To do

this, ŷ values predicted by all methods were displayed in

pair-wise scatter plots as shown in Fig. 5. Overall, there

was a strong consistency between any two of the five

methods. Predictions from different methods were highly

correlated and very close to each other. The most similar

predictions were those between the Bayesian Lasso and the

linear LS-SVR. On the other hand, some scatter plots

deviated somewhat from the 45� line, such as the e-SVR

Linear and the LS-SVR RBF pair.

Discussion

The SVR approach enables modeling of nonlinear rela-

tionships between phenotypes and SNPs via the use of a

nonlinear kernel, such as the Gaussian RBF kernel. Com-

pared to a linear kernel (which reduces SVR to a linear

regression model), the RBF kernel generally had a better

predictive ability in the two data sets analyzed here. In the

MY data, the response variable (PTA) is expected to reflect

the sum of additive genetic effects of all loci affecting the

trait. Therefore, a linear model should presumably be a

sensible choice. However, for both e-SVR and LS-SVR, a

slight improvement in prediction accuracy was achieved by

using a RBF kernel relative to using a linear kernel. On the

other hand, the response variable in the wheat data was

grain yield phenotype and, as such, may have a nonlinear

dependency on marker genotypes due to, e.g., dominance

or epistasis (Maccaferri et al. 2008). In this case, RBF had

a significant advantage over the linear kernel in predictive

correlation and PMSE (e.g., 17.5% increase in correlation

for e-SVR and 13% for LS-SVR). Hence, the relative

advantages of different methods are clearly data-depen-

dent. This was also reflected in the comparison of SVR vs.

the benchmark Bayesian Lasso, a purely additive model.

Bayesian Lasso seemed to be the best choice for MY data,

when considering predictive correlation and PMSE, but it

Table 1 Predictive correlations and predictive mean squared errors (PMSE) on the testing set by different methods: e-SVR, LS-SVR and

Bayesian Lasso

Criterion e-SVR LS-SVR Bayesian Lasso

Linear RBF Linear RBF

MY data

Correlation 0.669 0.692 0.689 0.700 0.700

PMSE 0.600 0.572 0.544 0.532 0.500

Wheat data

Correlation 0.497 (0.054) 0.584 (0.050) 0.517 (0.056) 0.584 (0.056) 0.515 (0.056)

PMSE 0.799 (0.086) 0.686 (0.071) 0.765 (0.083) 0.688 (0.079) 0.768 (0.078)

‘‘Linear’’ or ‘‘RBF’’ represents kernel functions used in the SVRs. In MY data, the training-test partition was fixed according to birth years of

bulls, whereas in the Wheat data, the training-test partition was random and repeated 50 times with standard errors given in parentheses. Bayesian

Lasso results for MY data are from Vázquez et al. (2010)
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was inferior to the nonlinear SVR when predicting wheat

yield.

As pointed out by Ben-Hur et al. (2008), in many bio-

informatics applications the linear kernel is competitive,

and its performance is not worse than that of more flexible

kernels, especially in a ‘‘small n large p’’ setting. Our

empirical results indicated that the choice of kernel

depends on the phenotype-marker relationship, in agree-

ment with Crossa et al. (2010). While the nonlinear kernel

should be better in handling complex relationships (e.g.,

epistasis), it may overfit the data if the response variable is

governed by a simple (e.g., additive) structure and if only a

finite sample is available for model training. Moreover,

non-linear SVR models suffer from lack of obvious inter-

pretability. For example, although they are potentially

capable of handling interactions among markers, one can-

not identify main or interactive effects. While this is an

impediment to the understanding of genetic mechanisms,

such models are nonetheless useful from the perspective of

prediction.

The main difference between the two SVR models

studied lies in the loss function adopted in the regularized

optimization problem. The e-SVR uses an e-insensitive loss

function, which ignores ‘‘small’’ errors and assigns ‘‘large’’

errors an absolute-value loss; the LS-SVR uses a common

squared loss. From the point of view of prediction, the

appropriateness of a loss function depends on the actual

noise structure of the data. For example, the e-insensitive

loss typically outperforms other loss functions when the

noise has a bimodal distribution (Cherkassky and Ma

2004a). Our MY and wheat data analysis indicated that LS-

SVR seemed to be a better choice than e-SVR, especially

when a linear kernel was in use, although the difference

was small. Moreover, LS-SVR has a practical advantage,

because it requires one less tuning parameter than e-SVR,

as mentioned before.

The linear LS-SVR and the Bayesian Lasso use the same

squared loss function but different penalty functions on

estimated marker effects. LS-SVR imposes a L2 penalty

while the Bayesian Lasso imposes a L1 penalty. Another

important difference is that the Bayesian Lasso produces

heterogeneous shrinkage on marker effects, a feature that

has been strongly advocated for handling genome-wide

markers for complex trait prediction (e.g., Meuwissen et al.

Fig. 5 Predicted response values in MY data by different methods. Each plot gives predictions from two methods, with the correlation and a 45�
line indicated
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2001). In contrast, LS-SVR assumes that all markers are

equally important. This is a consequence of solving a dual

problem, where a weight is assigned to each sample rather

than to each predictor variable. Nonetheless, this had little

influence on prediction performance as found here. The

two linear models had very similar predictive correlations

and PMSE values for both MY and wheat data (Table 1).

A SVM characterized by a kernel representation is a

way of handling complexity. A nice fact is that kernel

design can be decoupled from the learning algorithm, such

that context-specific kernels can be constructed for the task

at hand. Besides the commonly used kernels (e.g., Gaussian

RBF, polynomial), a large number of complicated kernels

for specific types of data exists, such as those for text,

protein/DNA sequences. Details on kernels can be found in

Shawe-Taylor and Cristianini (2004).

It is possible to find parameter-free kernels for a specific

context (Watkins 2000; Maenhout et al. 2007; González-

Recio et al. 2009). This offers great computational advantage

because tuning of kernel parameters is avoided. For example,

genetic similarity measured by the complement of modified

Rogers’ distance (or MRD) (Wright 1978; Goodman and

Stuber 1983) has been used for constructing kernels that do

not contain parameters (e.g., Maenhout et al. 2007). They

evaluated e-SVR in predicting phenotypic performance of

untested hybrids on a real maize data set. One of the kernels

employed in the study was based on simple sequence repeat

markers. They used MRD to compute dissimilarity (dkl)

between hybrids k and l, and then took its complement (skl) as

element (k, l) of the kernel:

skl ¼ 1� dkl where dkl ¼
1ffiffiffiffiffi
2s
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xs

i¼1

Xni

j¼1

pk
ij � pl

ij


 �2

vuut

Above, s is the number of loci, ni is the number of allele

for locus i and pij
k , pij

l represent allele frequency of the jth

allele at locus i for hybrids k and l, respectively. It was

found that skl produced predictions that were similar to

those obtained with a Gaussian RBF kernel. This suggests

that context-specific kernels may be good alternatives to

commonly used kernels, as long as they produce positive

definite matrices and are constructed in a biologically

meaningful way.

Conclusions

Two support vector regression models (e-SVR and LS-

SVR) were investigated using milk yield and wheat grain

yield data in terms of their ability to predict quantitative

traits using a large number of genetic markers. For each

method, a linear kernel and a Gaussian RBF kernel were

compared. In general, the RBF kernel had better predictive

performance than the linear kernel, and its superiority was

clearer in a situation in which phenotypes may be affected

by non-additive marker effects.
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